A new class of traversable wormholes was recently constructed which relies only on local bulk dynamics rather than an explicit coupling between distinct boundaries. Here we begin with a four-dimensional Weyl fermion field of any mass m propagating on a classical background defined by a Z2 quotient of (rotating) BTZ × S1. This setup allows one to compute the fermion stress-energy tensor exactly. For appropriate boundary conditions around a non-contractible curve, perturbative back-reaction at any m renders the associated wormhole traversable and suggests it can become eternally traversable at the limit where the background becomes extremal. A key technical step is the proper formulation of the method of images for fermions in curved spacetime. We find the stress- energy of spinor fields to have important kinematic differences from that of scalar fields, typically causing the sign of the integrated null stress-energy (and thus in many cases the sign of the time delay/advance) to vary around the throat of the wormhole. Similar effects may arise for higher-spin fields.
CITATION STYLE
Marolf, D., & McBride, S. (2019). Simple perturbatively traversable wormholes from bulk fermions. Journal of High Energy Physics, 2019(11). https://doi.org/10.1007/JHEP11(2019)037
Mendeley helps you to discover research relevant for your work.