Abstract
Serotonin receptors 5-HT1A and 5-HT7 are highly coexpressed in brain regions implicated in depression. However, their functional interaction has not been established. In the present study we show that 5-HT1A and 5-HT7 receptors form heterodimers both in vitro and in vivo. Foerster resonance energy transfer-based assays revealed that, in addition to heterodimers, homodimers composed either of 5-HT1A or 5-HT7 receptors together with monomers coexist in cells. The highest affinity for complex formation was obtained for the 5-HT7-5-HT7 homodimers, followed by the 5-HT7-5-HT1A heterodimers and 5-HT1A-5-HT1A homodimers. Functionally, heterodimerization decreases 5-HT1A-receptor-mediated activation of Gi protein without affecting 5-HT7-receptor-mediated signalling. Moreover, heterodimerization markedly decreases the ability of the 5-HT1A receptor to activate G-protein-gated inwardly rectifying potassium channels in a heterologous system. The inhibitory effect on such channels was also preserved in hippocampal neurons, demonstrating a physiological relevance of heteromerization in vivo. In addition, heterodimerization is crucially involved in initiation of the serotonin-mediated 5-HT1A receptor internalization and also enhances the ability of the 5-HT1A receptor to activate the mitogen-activated protein kinases. Finally, we found that production of 5-HT7 receptors in the hippocampus continuously decreases during postnatal development, indicating that the relative concentration of 5-HT1A-5-HT7 heterodimers and, consequently, their functional importance undergoes pronounced developmental changes. © 2012. Published by The Company of Biologists Ltd.
Author supplied keywords
Cite
CITATION STYLE
Renner, U., Zeug, A., Woehler, A., Niebert, M., Dityatev, A., Dityateva, G., … Ponimaskin, E. G. (2012). Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signalling and trafficking. Journal of Cell Science, 125(10), 2486–2499. https://doi.org/10.1242/jcs.101337
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.