Abstract
We characterized the intracellular symbiotic bacteria of the mulberry psyllid Anomoneura mori by performing a molecular phylogenetic analysis combined with in situ hybridization. In its abdomen, the psyllid has a large, yellow, bilobed mycetome (or bacteriome) which consists of many round uninucleated mycetocytes (or bacteriocytes) enclosing syncytial tissue. The mycetocytes and syncytium harbor specific intracellular bacteria, the X- symbionts and Y-symbionts, respectively. Almost the entire length of the bacterial 16S ribosomal DNA (rDNA) was amplified and cloned from the whole DNA of A. mori, and two clones, the A-type and B-type clones, were identified by restriction fragment length polymorphism analysis. In situ hybridization with specific oligonucleotide probes demonstrated that the A-type and B-type 16S rDNAs were derived from the X-symbionts and Y-symbionts, respectively. Molecular phylogenetic analyses of the 16S rDNA sequences showed that these symbionts belong to distinct lineages in the γ subdivision of the Proteobacteria. No 16S rDNA sequences in the databases were closely related to the 16S rDNA sequences of the X- and Y-symbionts. However, the sequences that were relatively closely related to them were the sequences of endosymbionts of other insects. The nucleotide compositions of the 16S rDNAs of the X- and Y-symbionts were highly AT biased, and the sequence of the X. symbiont was the most AT-rich bacterial 16S rDNA sequence reported so far.
Cite
CITATION STYLE
Fukatsu, T., & Nikoh, N. (1998). Two intracellular symbiotic bacteria from the mulberry psyllid Anomoneura mori (insecta Homoptera). Applied and Environmental Microbiology, 64(10), 3599–3606. https://doi.org/10.1128/aem.64.10.3599-3606.1998
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.