Ultraviolet-B Irradiation Induces Resistance against Powdery Mildew in Cucumber (Cucumis sativus L.) through a Different Mechanism Than That of Heat Shock-Induced Resistance

4Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

Heat shock treatment (HST) and UV-B irradiation can reduce pathogen infection in crops. However, information on the mechanism of UV-B action is limited. Here, we investigated the mechanism of UV-B-induced resistance against powdery mildew in cucumber and compared it to that of heat-shock-induced resistance. We measured the percentage of leaf area showing disease symptoms and examined the expression levels of defense- and heat-shock-related genes across treatment groups. UV-B irradiation (intensity, 5 µW/cm2) for 4 h/d followed by pathogen inoculation reduced the appearance of powdery mildew by 21.17% compared with the control group. Unlike HST—which induces systemic resistance—UV-B irradiation induced local resistance in cucumber, as indicated by local changes in gene expression (Chi2 and ETR2). UV-B-treated plants inoculated with powdery mildew showed higher expression levels of Chi2, ETR2, and LOX6 than plants that were either treated with UV-B or inoculated. UV-B had no major effects on systemic acquired resistance or heat shock transcription factors, which are known to be affected by HST. Combined HST and UV-B had a strong synergistic effect in reducing powdery mildew in cucumber. Our results indicate that UV-B treatment likely operates through a different mechanism than HST in triggering cucumber resistance against powdery mildew infection.

Cite

CITATION STYLE

APA

Fardhani, D. M., Kharisma, A. D., Kobayashi, T., Arofatullah, N. A., Yamada, M., Tanabata, S., … Sato, T. (2022). Ultraviolet-B Irradiation Induces Resistance against Powdery Mildew in Cucumber (Cucumis sativus L.) through a Different Mechanism Than That of Heat Shock-Induced Resistance. Agronomy, 12(12). https://doi.org/10.3390/agronomy12123011

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free