Pembentukan Aturan Fuzzy Untuk Pemberian Rekomendasi Penerima Bantuan Keluarga Berumah Tidak Layak Huni Menggunakan K-means Clustering

  • Aidil A
  • Sugiono J
  • Setiawan E
  • et al.
N/ACitations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Bantuan bagi keluarga yang rumah tidak layak huni merupakan salah satu manfaat sosial yang diberikan kepada keluarga yang mengalami kesulitan keuangan dan/atau memiliki rumah tidak layak huni. Variabel yang dipertimbangkan saat menentukan penerima manfaat sering kali membuat keputusan sulit diambil. Oleh karena itu, diperlukan sistem penalaran fuzzy yang secara otomatis menghasilkan aturan-aturan sebagai pembuat keputusan yang diharapkan. Untuk membentuk aturan fuzzy diperlukan seorang pakar. Pakar adalah seorang ahli yang berpengalaman dalam suatu bidang yang mampu menjelaskan suatu aturan yang terkait dengan suatu bidang. Dalam penelitian ini dibentuk suatu rule secara otomatis yang tidak tergantung dengan seorang pakar. Aturan fuzzy dibangkitkan bisa diperoleh dari beberapa teknik seperti proses clustering. Metode yang digunakan dalam membangkitkan aturan fuzzy ini yaitu metode k-means clustering. Dalam hal rekomendasi penerima bantuan rumah tidak layak huni, K-means clustering digunakan untuk mengelompokkan data dan mengembangkan aturan. Hasil dari pembangkitan aturan fuzzy digunakan untuk proses inferensi fuzzy menggunakan metode Fuzzy Inference System Sugeno. Metode sugeno menghasilkan output (konsekuen) berupa konstanta atau persamaan linier. Dalam penelitian ini digunakan 1000 data training dan dilakukan proses pengujian 300 data uji untuk mendapatkan rekomendasi penerima bantuan rumah tidak layak huni. Hasil pengujian digunakan untuk mengetahui akurasi aturan yang terbentuk.Dari hasil penelitian menunjukkan bahwa hasil k- means clustering dapat membentuk rule secara otomatis untuk pembangkitan aturan Fuzzy Inference System Sugeno dapat dilihat dari hasil akurasi perhitungan pengujian data uji skenario global sama-sama menghasilkan akurasi minimal di atas 75%.

Cite

CITATION STYLE

APA

Aidil, A., Sugiono, J. P., Setiawan, E. I., & Putra, A. S. (2022). Pembentukan Aturan Fuzzy Untuk Pemberian Rekomendasi Penerima Bantuan Keluarga Berumah Tidak Layak Huni Menggunakan K-means Clustering. Journal of Intelligent System and Computation, 4(2), 85–92. https://doi.org/10.52985/insyst.v4i2.216

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free