Electronic Control of the Scholl Reaction: Selective Synthesis of Spiro vs Helical Nanographenes

21Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Scholl oxidation has become an essential reaction in the bottom-up synthesis of molecular nanographenes. Herein, we describe a Scholl reaction controlled by the electronic effects on the starting substrate (1 a, b). Anthracene-based polyphenylenes lead to spironanographenes under Scholl conditions. In contrast, an electron-deficient anthracene substrate affords a helically arranged molecular nanographene formed by two orthogonal dibenzo[fg,ij]phenanthro-[9,10,1,2,3-pqrst]pentaphene (DBPP) moieties linked through an octafluoroanthracene core. Density Functional Theory (DFT) calculations predict that electronic effects control either the first formation of spirocycles and subsequent Scholl reaction to form spironanographene 2, or the expected dehydrogenation reaction leading solely to the helical nanographene 3. The crystal structures of four of the new spiro compounds (syn 2, syn 9, anti 9 and syn 10) were solved by single crystal X-ray diffraction. The photophysical properties of the new molecular nanographene 3 reveal a remarkable dual fluorescent emission.

Cite

CITATION STYLE

APA

Izquierdo-García, P., Fernández-García, J. M., Perles, J., Fernández, I., & Martín, N. (2023). Electronic Control of the Scholl Reaction: Selective Synthesis of Spiro vs Helical Nanographenes. Angewandte Chemie - International Edition, 62(7). https://doi.org/10.1002/anie.202215655

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free