A solution to a problem of cassels and diophantine properties of cubic numbers

19Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

We prove that almost any pair of real numbers α, β, satisfies the following inhomogeneous uniform version of Littlewood's conjecture: (C1) co where 〈•〉) denotes the distance from the nearest integer. The existence of even a single pair that satisfies statement (C1), solves a problem of Cas-sels from the 50's. We then prove that if 1,α, β span a totally real cubic number field, then α, β, satisfy (C1). This generalizes a result of Cassels and Swinnerton-Dyer, which says that such pairs satisfy Littlewood's conjecture. It is further shown that if , α, β are any two real numbers, such that 1, α, β, are linearly dependent over Q, they cannot satisfy (C1). The results are then applied to give examples of irregular orbit closures of the diagonal group of a new type. The results are derived from rigidity results concerning hyperbolic actions of higher rank commutative groups on homogeneous spaces.

Cite

CITATION STYLE

APA

Shapira, U. (2011). A solution to a problem of cassels and diophantine properties of cubic numbers. Annals of Mathematics, 173(1), 543–557. https://doi.org/10.4007/annals.2011.173.1.11

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free