Effects of 3'-OH and 5'-PO4 base mispairs and damaged base lesions on the fidelity of nick sealing by Deinococcus radiodurans RNA ligase

13Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Deinococcus radiodurans RNA ligase (DraRnl) is the founding member of a family of end-joining enzymes encoded by diverse microbes and viruses. DraRnl ligates 3'-OH, 5'-PO4 nicks in double-stranded nucleic acids in which the nick 3'-OH end is RNA. Here we gauge the effects of 3'-OH and 5'-PO4 base mispairs and damaged base lesions on the rate of nick sealing. DraRnl is indifferent to the identity of the 3'-OH nucleobase, provided that it is correctly paired. With 3'-OH mispairs, the DraRnl sealing rate varies widely, with G-T and A-C mispairs being the best substrates and G-G, G-A, and A-A mispairs being the worst. DraRnl accepts 3' A-8-oxoguanine (oxoG) to be correctly paired, while it discriminates against U-oxoG and G-oxoG mispairs. DraRnl displays high activity and low fidelity in sealing 3'-OH ends opposite an 8-oxoadenine lesion. It prefers 3'-OH adenosine when sealing opposite an abasic template site. With 5'-PO4 mispairs, DraRnl seals a 5' T-G mispair as well as it does a 5' C-G pair; in most other respects, the ligation fidelity at 5' mispairs is similar to that at 3' mispairs. DraRnl accepts a 5' A-oxoG end to be correctly paired, yet it is more tolerant of 5' T-oxoG and 5' G-oxoG mispairs than the equivalent configurations on the 3' side of the nick. At 5' nucleobase-abasic site nicks, DraRnl prefers to ligate when the nucleobase is a purine. The biochemical properties of DraRnl are compatible with its participation in the templated repair of RNA damage or in the sealing of filled DNA gaps that have a 3' ribopatch. © 2014, American Society for Microbiology.

Cite

CITATION STYLE

APA

Schmier, B. J., & Shuman, S. (2014). Effects of 3’-OH and 5’-PO4 base mispairs and damaged base lesions on the fidelity of nick sealing by Deinococcus radiodurans RNA ligase. Journal of Bacteriology, 196(9), 1704–1712. https://doi.org/10.1128/JB.00020-14

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free