Abstract
In developing countries, one-third of reactive arthritis (ReA) cases are associated with Salmonella enterocolitis; nevertheless, there is no animal model for studying this pathology. Here we induced a self-limiting Salmonella enterica serovar Enteritidis enterocolitis in mice to analyze the onset of ReA. BALB/c mice received orally 20 μg of streptomycin 24 h before intragastric inoculation of a low dose (3×103 to 4×103 CFU) of S. Enteritidis. In response to Salmonella infection, a 30-fold increase in the expression of interleukin-17 (IL-17), measured by quantitative PCR, was observed in mesenteric lymph nodes 5 days postinfection. At this time synovitis was already evident, and concomitantly, a significant increase in joint tumor necrosis factor alpha (TNF-α) was detected by enzyme-linked immunosorbent assay (ELISA). The early development of joint lesions was accompanied by an increased expression of IL-17 in inguinal and popliteal lymph nodes. Infection with 107 CFU of an isogenic ΔinvG mutant bearing a defective type III secretion system of Salmonella encoded in the pathogenicity island 1 apparatus (TTSS-1) induced enterocolitis histologically similar to that triggered by the wild-type strain. Interestingly, despite the higher infective dose used, the mutant did not trigger intestinal IL-17. Moreover, no synovitis was observed in mice suffering ΔinvG enterocolitis. Neutralization of IL-17 in mice infected with S. Enteritidis prevented both synovitis and the increment of TNF-α in the joints, suggesting that IL-17 participates in the generation of Salmonella-induced ReA through the induction of TNF-α in the joints. © 2012, American Society for Microbiology.
Cite
CITATION STYLE
Llana, M. N., Sarnacki, S. H., Vázquez, M. V., Gartner, A. S., Giacomodonato, M. N., & Cerquetti, M. C. (2012). Salmonella enterica induces joint inflammation and expression of interleukin-17 in draining lymph nodes early after onset of enterocolitis in mice. Infection and Immunity, 80(6), 2231–2239. https://doi.org/10.1128/iai.00324-12
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.