The synthesis of silver nanoparticles (Ag-NPs) was achieved by a simple green chemistry procedure using sodium alginate (Na-Alg) under ultrasonic radiation as a stabilizer and physical reducing agent. The effect of radiation time on the synthesis of Ag-NPs was carried out at room temperature until 720 min. The successful formation of Ag-NPs has been confirmed by UV-Vis, XRD, TEM, FESEM-EDX, zeta potential, and FT-IR analyses. The surface plasmon resonance band appeared at the range of 452-465 nm that is an evidence of formation of Ag-NPs. The XRD study showed that the particles are crystalline structure in nature, with a face-centered cubic (fcc) structure. The TEM study showed the Ag-NPs have average diameters of around 20.16-22.38 nm with spherical shape. The FESEM-EDX analysis confirmed the spherical shape of Ag-NPs on the surface of Alg and the element of Ag with the high purity. The zeta potential showed high stability of Alg/Ag-NPs especially after 720 min irradiation with value of -67.56 mV. The FT-IR spectrum confirmed that the Ag-NPs have been capped by the Alg with van der Waals interaction. The Alg/Ag-NPs showed the antibacterial activity against Gram-positive and Gram-negative bacteria. These suggest that Ag-NPs can be employed as an effective bacteria inhibitor and can be applied in medical field.
CITATION STYLE
Faried, M., Shameli, K., Miyake, M., Hajalilou, A., Zamanian, A., Zakaria, Z., … Binti Mad Nordin, M. F. (2016). A Green Approach for the Synthesis of Silver Nanoparticles Using Ultrasonic Radiation’s Times in Sodium Alginate Media: Characterization and Antibacterial Evaluation. Journal of Nanomaterials, 2016. https://doi.org/10.1155/2016/4941231
Mendeley helps you to discover research relevant for your work.