Abstract
A novel gene, matR, located upstream of matABC, transcribed in the opposite direction, and encoding a putative regulatory protein by sequence analysis was discovered from Rhizobium leguminosarum bv. trifolii. The matA, matB, and matC genes encode malonyl-CoA decarboxylase, malonyl-CoA synthetase, and a presumed malonate transporter, respectively. Together, these enzymes catalyze the uptake and conversion of malonate to acetyl-CoA. The deduced amino-acid sequence of matR showed sequence similarity with GntR from Bacillus subtilis in the N-terminal region encoding a helix-turn-helix domain. Electrophoretic mobility shift assay indicated that MatR bound to a fragment of DNA corresponding to the mat promoter region. The addition of malonate or methylmalonate increased the association of MatR and DNA fragment. DNase I footprinting assays identified a MatR binding site encompassing 66 nucleotides near the mat promoter. The mat operator region included an inverted repeat (TCTTGTA/TACACGA) centered -46.5 relative to the transcription start site. Transcriptional assays, using the luciferase gene, revealed that MatR represses transcription from the mat promoter and malonate alleviates MatR-mediated repression effect on the expression of Pmat-luc+ reporter fusion.
Author supplied keywords
Cite
CITATION STYLE
Lee, H. Y., An, J. H., & Kim, Y. S. (2000). Identification and characterization of a novel transcriptional regulator, MatR, for malonate metabolism in Rhizobium leguminosarum bv. trifolii. European Journal of Biochemistry, 267(24), 7224–7230. https://doi.org/10.1046/j.1432-1327.2000.01834.x
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.