Formaldehyde-derived wood adhesives have dominated in woody composites production up to now, while facing a significant challenge in non-renewable raw materials and the formaldehyde emission. To solve these problems, an eco-friendly soybean protein-based wood adhesive was explored via the addition of renewable cardanol based epoxy (CBE) as cross-linking agent. The curing mechanism and viscosity of the adhesives were investigated and the bonding performance was evaluated with three-ply plywood. Fourier transformed infrared spectroscopy (FTIR) analysis confirmed the formation of new ether linkages and the consumption of epoxy groups in the cured adhesives, thereby improving the thermal stabilities and cohesion. Plywood bonded with the CBE-modified soybean protein-based adhesive reached the maximum wet shear strength of 1.11 MPa (4 wt.% CBE addition), a 48% increase compared to the control, whereas the viscosity of adhesive decreased by 68.2%. The wet shear strength of the plywood met the requirements of the Chinese National Standard GB/T 9846-2015 for interior plywood application. The formaldehyde-free adhesive with excellent water resistance adhesiveness performance shows great potential in woody composites as an alternative to formaldehyde derived wood adhesives.
CITATION STYLE
Zhu, Z., Zhang, E., Tu, Y., Ye, M., & Chen, N. (2022). An Eco-Friendly Wood Adhesive Consisting of Soybean Protein and Cardanol-Based Epoxy for Wood Based Composites. Polymers, 14(14). https://doi.org/10.3390/polym14142831
Mendeley helps you to discover research relevant for your work.