Abstract
This paper experimentally controls a flexible joint via explicit model predictive control (Explicit MPC) method. The scheme divides the state space into different partitions, then solves the associated multi parametric optimization in off-line computations. The result stores in a look-up table to be used in on-line algorithm. First, the state space equations of the flexible joint are derived and linearized around the working point. Then, in order to meet the plant’s specifications, desired performance and the limitation of processor/memory, the constraints, weights, sampling time and prediction horizon are determined for the system. Finally, the algorithm is applied on the experimental plant. Numerous simulations, the result of the experiment and comparison with other methods confirmed that the method was able to control the vibrations of the constrained flexible joint.
Author supplied keywords
Cite
CITATION STYLE
Ettefagh, M. H., Naraghi, M., & Towhidkhah, F. (2019). Position control of a flexible joint via explicit model predictive control: An experimental implementation. Emerging Science Journal, 3(3), 146–156. https://doi.org/10.28991/esj-2019-01177
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.