Abstract
Background: Low adherence to recommended treatments is a multifactorial problem for patients in rehabilitation after myocardial infarction (MI). In a nationwide trial of internet-delivered cognitive behavior therapy (iCBT) for the high-risk subgroup of patients with MI also reporting symptoms of anxiety, depression, or both (MI-ANXDEP), adherence was low. Since low adherence to psychotherapy leads to a waste of therapeutic resources and risky treatment abortion in MI-ANXDEP patients, identifying early predictors for adherence is potentially valuable for effective targeted care. Objectives: The goal of the research was to use supervised Machine learning to investigate both established and novel predictors for iCBT adherence in MI-ANXDEP patients. Methods: Data were from 90 MI-ANXDEP patients recruited from 25 hospitals in Sweden and randomized to treatment in the iCBT trial Uppsala University Psychosocial Care Programme (U-CARE) Heart study. Time point of prediction was at completion of the first homework assignment. Adherence was defined as having completed more than 2 homework assignments within the 14-week treatment period. A supervised Machine learning procedure was applied to identify the most potent predictors for adherence available at the first treatment session from a range of demographic, clinical, psychometric, and linguistic predictors. The internal binary classifier was a random forest model within a 3×10–fold cross-validated recursive feature elimination (RFE) resampling which selected the final predictor subset that best differentiated adherers versus nonadherers. Results: Patient mean age was 58.4 years (SD 9.4), 62% (56/90) were men, and 48% (43/90) were adherent. Out of the 34 potential predictors for adherence, RFE selected an optimal subset of 56% (19/34; Accuracy 0.64, 95% CI 0.61-0.68, P
Author supplied keywords
Cite
CITATION STYLE
Wallert, J., Gustafson, E., Held, C., Madison, G., Norlund, F., Von Essen, L., & Olsson, E. M. G. (2018). Predicting adherence to internet-Delivered psychotherapy for symptoms of depression and anxiety after myocardial infarction: Machine learning insights from the U-CARE heart randomized controlled trial. Journal of Medical Internet Research, 20(10). https://doi.org/10.2196/10754
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.