Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk

648Citations
Citations of this article
696Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Hexagonal boron nitride (h-BN) and semiconducting transition metal dichalcogenides (TMDs) promise greatly improved electrostatic control in future scaled electronic devices. To quantify the prospects of these materials in devices, we calculate the out-of-plane and in-plane dielectric constant from first principles for TMDs in trigonal prismatic and octahedral coordination, as well as for h-BN, with a thickness ranging from monolayer and bilayer to bulk. Both the ionic and electronic contribution to the dielectric response are computed. Our calculations show that the out-of-plane dielectric response for the transition-metal dichalcogenides is dominated by its electronic component and that the dielectric constant increases with increasing chalcogen atomic number. Overall, the out-of-plane dielectric constant of the TMDs and h-BN increases by around 15% as the number of layers is increased from monolayer to bulk, while the in-plane component remains unchanged. Our computations also reveal that for octahedrally coordinated TMDs the ionic (static) contribution to the dielectric response is very high (4.5 times the electronic contribution) in the in-plane direction. This indicates that semiconducting TMDs in the tetragonal phase will suffer from excessive polar-optical scattering thereby deteriorating their electronic transport properties.

Cite

CITATION STYLE

APA

Laturia, A., Van de Put, M. L., & Vandenberghe, W. G. (2018). Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. Npj 2D Materials and Applications, 2(1). https://doi.org/10.1038/s41699-018-0050-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free