Background: Caspase-8 (Casp8) acts as an initiator in cell apoptosis signaling. However, the role of Casp8 in tuning the tumor immune microenvironment remains controversial due to the complicated crosstalk between immune-tolerogenic apoptotic cell death and immunogenic cell death cascades. Methods: The Cancer Genome Atlas (TCGA) and publicly accessible immune checkpoint blockade (ICB)-treated cohorts were used to investigate the clinical relevance of Casp8. A tumor-bearing mouse model was used to characterize changes in the tumor microenvironment and to explore the efficacy of ICB treatment under Casp8 knockout conditions. Results: By exploring TCGA datasets, we showed that the expression level of Casp8 was associated with an immuno-hot microenvironment across various solid tumor types. Casp8 deficiency leads to decreased CD8+ T cell infiltration and resistance to anti-PD-L1 therapy in a mouse model. Mechanistically, Casp8 deficiency or pharmacological disruption results in impaired ecto-calreticulin transition in tumor cells, which in turn hampers antigen presentation in draining lymph nodes. Furthermore, radiotherapy restored sensitivity to anti-PD-L1 treatment via elevated calreticulin surface expression. Conclusions: Our data revealed a causative role of Casp8 in modulating the immunogenicity of tumor cells and responsiveness to ICB immunotherapies and proposed radiotherapy as a salvage approach to overcome Casp8 deficiency-mediated ICB resistance.
CITATION STYLE
Gong, Z., Jia, Q., Guo, J., Li, C., Xu, S., Jin, Z., … Zhou, Y. (2023). Caspase-8 contributes to an immuno-hot microenvironment by promoting phagocytosis via an ecto-calreticulin-dependent mechanism. Experimental Hematology and Oncology, 12(1). https://doi.org/10.1186/s40164-022-00371-1
Mendeley helps you to discover research relevant for your work.