Mapping Elastic Properties of Heterogeneous Materials in Liquid with Angstrom-Scale Resolution

73Citations
Citations of this article
90Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Fast quantitative mapping of mechanical properties with nanoscale spatial resolution represents one of the major goals of force microscopy. This goal becomes more challenging when the characterization needs to be accomplished with subnanometer resolution in a native environment that involves liquid solutions. Here we demonstrate that bimodal atomic force microscopy enables the accurate measurement of the elastic modulus of surfaces in liquid with a spatial resolution of 3 Å. The Young's modulus can be determined with a relative error below 5% over a 5 orders of magnitude range (1 MPa to 100 GPa). This range includes a large variety of materials from proteins to metal-organic frameworks. Numerical simulations validate the accuracy of the method. About 30 s is needed for a Young's modulus map with subnanometer spatial resolution.

Cite

CITATION STYLE

APA

Amo, C. A., Perrino, A. P., Payam, A. F., & Garcia, R. (2017). Mapping Elastic Properties of Heterogeneous Materials in Liquid with Angstrom-Scale Resolution. ACS Nano, 11(9), 8650–8659. https://doi.org/10.1021/acsnano.7b04381

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free