Abstract
The crystal distortion such as lattice strain and defect located at the surfaces and grain boundaries induced by soft perovskite lattice highly determines the charge extraction-transfer dynamics and recombination to cause an inferior efficiency of perovskite solar cells (PSCs). Herein, the authors propose a strategy to significantly reduce the superficial lattice tensile strain by means of incorporating an inorganic 2D Cl-terminated Ti3C2 (Ti3C2Clx) MXene into the bulk and surface of CsPbBr3 film. Arising from the strong interaction between Cl atoms in Ti3C2Clx and the under-coordinated Pb2+ in CsPbBr3 lattice, the expanded perovskite lattice is compressed and confined to act as a lattice “tape”, in which the Pb-Cl bond plays a role of “glue” and the 2D Ti3C2 immobilizes the lattice. Finally, the defective surface is healed and a champion efficiency as high as 11.08% with an ultrahigh open-circuit voltage up to 1.702 V is achieved on the best all-inorganic CsPbBr3 PSC, which is so far the highest efficiency record for this kind of PSCs. Furthermore, the unencapsulated device demonstrates nearly unchanged performance under 80% relative humidity over 100 days and 85 °C over 30 days.
Author supplied keywords
Cite
CITATION STYLE
Zhou, Q., Duan, J., Du, J., Guo, Q., Zhang, Q., Yang, X., … Tang, Q. (2021). Tailored Lattice “Tape” to Confine Tensile Interface for 11.08%-Efficiency All-Inorganic CsPbBr3 Perovskite Solar Cell with an Ultrahigh Voltage of 1.702 V. Advanced Science, 8(19). https://doi.org/10.1002/advs.202101418
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.