The study aims at the assessment of the impact of geometrical parameters of spiral separators on the efficiency of density separation of fine-grained materials. Experiments were carried out on three spiral separators: Krebs 2.85, Reichert LD-4 and Reichert LG-7. Three materials were used for the tests: raw coal, coal waste and mix of sand and magnetite as the model material. Results of raw coal and coal waste upgrading showed that density separation was most efficient in Reichert LD-4 spiral. This is due to the fact that this device had the highest amount of coils, height of sluice as well as was equipped with additional dense product collector and additional water sluice for transport water. The lower slope of sluice and larger height made separation even more efficient. Analysis of separation of model material, that is the mix of sand and magnetite, showed that in this case the existence of additional water sluice does not have an impact on product separation and best results were obtained in the Reichert LG-7 spiral separator. The shape and width of sluices did not have a significant impact on the separation process.
CITATION STYLE
Szpyrka, J., Suponik, T., & Lutyński, M. (2017). Impact of spiral separator geometrical parameters on the density separation of various fine-grained materials. In E3S Web of Conferences (Vol. 18). EDP Sciences. https://doi.org/10.1051/e3sconf/201712301035
Mendeley helps you to discover research relevant for your work.