Mercury (Hg) methylation in the Florida Everglades is of great environmental concern because of its adverse effects on human and wildlife health through biomagnification in aquatic food webs. Periphyton and flocculant materials (floc) overlaying peat soil are important ecological compartments producing methylmercury (MeHg) in this ecosystem. These compartments retain higher concentrations of MeHg than did soil at study sites across nutrient and/or sulfate gradient(s). To better understand what controls Hg methylation in these compartments, the present study explored the structures and abundances of Hg methylators using genes hgcAB as biomarkers. The hgcA sequences indicated that these compartments hosted a high diversity of Hg methylators, including Deltaproteobacteria, Chloroflexi, Firmicutes, and Methanomicrobia, with community compositions that differed between these habitats. The copy numbers of hgcAB quantified by quantitative PCR revealed that floc and soil supported higher numbers of Hg methylators than periphyton in the Everglades ecosystem. The abundance of Hg methylators was strongly positively correlated with concentrations of carbon and nutrients (e.g., phosphorus and nitrogen) according to redundancy analysis. Strong correlations were also observed among numbers of sulfate reducers, methanogens, and the dominant hgcAB-carrying groups, suggesting that hgcAB would spread primarily through the growth of those assemblages. The abundances of Hg methylators were weakly negatively correlated to MeHg concentrations, suggesting that the size of this population would not solely determine the final concentrations of MeHg in the ecological compartments studied. This study extends the knowledge regarding the distribution of diverse potential mercury methylators in different environmental compartments in a wetland of national concern.
CITATION STYLE
Bae, H. S., Dierberg, F. E., & Ogram, A. (2019). Periphyton and flocculent materials are important ecological compartments supporting abundant and diverse mercury methylator assemblages in the Florida Everglades. Applied and Environmental Microbiology, 85(13). https://doi.org/10.1128/AEM.00156-19
Mendeley helps you to discover research relevant for your work.