Abstract
It has been shown that hypercholesterolemia (HCh) exaggerates the microvascular dysfunction that is elicited by ischemia and reperfusion (I/R). The objective of this study was to determine whether oxidants contribute to the exaggerated inflammatory responses and enhanced albumin leakage observed in HCh rat mesenteric venules exposed to I/R (10 minutes of ischemia and 30 minutes of reperfusion). Intravital videomicroscopy was used to quantify the number of adherent and emigrated leukocytes, albumin extravasation, platelet- leukocyte aggregation in postcapillary venules, and the degranulation of adjacent mast cells. Oxidation of the fluorochrome dihydrorhodamine 123 (DHR) was used to monitor oxidant production by venular endothelium. I/R was shown to elicit an increased DHR oxidation in venules of both control and HCh rats, with the latter group exhibiting a significantly larger response. Treatment with either oxypurinol or superoxide dismutase largely prevented the leukocyte recruitment, platelet-leukocyte aggregation, mast cell degranulation, and enhanced DHR oxidation elicited by I/R in HCh rats. The enhanced albumin leakage was reduced by superoxide dismutase but not by oxypurinol. These results indicate that HCh amplifies the oxidant stress elicited by I/R and that interventions that blunt the oxidant stress effectively attenuate the leukocyte, platelet, and mast cell activation that result from I/R.
Author supplied keywords
Cite
CITATION STYLE
Kurose, I., Wolf, R. E., Grisham, M. B., & Neil Granger, D. (1998). Hypercholesterolemia enhances oxidant production in mesenteric venules exposed to ischemia/reperfusion. Arteriosclerosis, Thrombosis, and Vascular Biology, 18(10), 1583–1588. https://doi.org/10.1161/01.ATV.18.10.1583
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.