Abstract
T cell dysfunction has a crucial role in establishing and maintaining viral persistence. We have previously shown a decline in miR-181a, which regulates CD4+ T cell responses via DUSP6 overexpression, in individuals with hepatitis C virus (HCV) infection. Here, we describe accelerated T cell senescence in HCV-infected individuals compared with age- and sex-matched healthy subjects. Mechanistic studies revealed that up-regulation of transcription factor ΔNp63 led to the decline of miR-181a expression, resulting in an overexpression of the antiaging protein Sirt1, in CD4+ T cells from HCV-infected individuals. Either reconstituting miR-181a or silencing ΔNp63 or Sirt1 expression in CD4+ T cells led to accelerated T cell senescence, as evidenced by an increased senescence-associated β-galactosidase (SA-β-gal) expression, shortened telomere length, and decreased EdU incorporation; this suggests that HCV-induced T cell senescence is counterregulated by the ΔNp63–miR-181a–Sirt1 pathway. An increase of IL-2 production was observed in these senescent CD4+ T cells and was driven by a markedly reduced frequency of Foxp3+ regulatory T (Treg) cells and increased number of Foxp3− effector T (Teff) cells upon manipulating the ΔNp63–miR-181a–Sirt1 pathway. In conclusion, these findings provide novel mechanistic insights into how HCV uses cellular senescent pathways to regulate T cell functions, revealing new targets for rejuvenating impaired T cell responses during chronic viral infection.
Cite
CITATION STYLE
Zhou, Y., Li, G. Y., Ren, J. P., Wang, L., Zhao, J., Ning, S. B., … Yao, Z. Q. (2016). Protection of CD4+ T cells from hepatitis C virus infection-associated senescence via ΔNp63–miR-181a–Sirt1 pathway. Journal of Leukocyte Biology, 100(5), 1201–1211. https://doi.org/10.1189/jlb.5a0316-119rr
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.