Mathematical model to interpret localized reflectance spectra measured in the presence of a strong fluorescence marker

  • Bravo J
  • Davis S
  • Roberts D
  • et al.
3Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Quantification of multiple fluorescence markers during neurosurgery has the potential to provide complementary contrast mechanisms between normal and malignant tissues, and one potential combination involves fluorescein sodium (FS) and aminolevulinic acid-induced protoporphyrin IX (PpIX). We focus on the interpretation of reflectance spectra containing contributions from elastically scattered (reflected) photons as well as fluorescence emissions from a strong fluorophore (i.e., FS). A model-based approach to extract μa and μ′s in the presence of FS emission is validated in optical phantoms constructed with Intralipid (1% to 2% lipid) and whole blood (1% to 3% volume fraction), over a wide range of FS concentrations (0 to 1000  μg/ml 1000  μg/ml ). The results show that modeling reflectance as a combination of elastically scattered light and attenuation-corrected FS-based emission yielded more accurate tissue parameter estimates when compared with a nonmodified reflectance model, with reduced maximum errors for blood volume (22% versus 90%), microvascular saturation (21% versus 100%), and μs′ (13% versus 207%). Additionally, quantitative PpIX fluorescence sampled in the same phantom as FS showed significant differences depending on the reflectance model used to estimate optical properties (i.e., maximum error 29% versus 86%). These data represent a first step toward using quantitative optical spectroscopy to guide surgeries through simultaneous assessment of FS and PpIX.

Cite

CITATION STYLE

APA

Bravo, J. J., Davis, S. C., Roberts, D. W., Paulsen, K. D., & Kanick, S. C. (2016). Mathematical model to interpret localized reflectance spectra measured in the presence of a strong fluorescence marker. Journal of Biomedical Optics, 21(6), 061004. https://doi.org/10.1117/1.jbo.21.6.061004

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free