No more monkeying around: Primate malaria model systems are key to understanding Plasmodium vivax liver-stage biology, hypnozoites, and relapses

45Citations
Citations of this article
94Readers
Mendeley users who have this article in their library.

Abstract

Plasmodium vivax is a human malaria parasite responsible for significant morbidity worldwide and potentially death. This parasite possesses formidable liver-stage biology that involves the formation of dormant parasites known as hypnozoites. Hypnozoites are capable of activating weeks, months, or years after a primary blood-stage infection causing relapsing bouts of illness. Elimination of this dormant parasitic reservoir will be critical for global malaria eradication. Although hypnozoites were first discovered in 1982, few advancements have been made to understand their composition and biology. Until recently, in vitro models did not exist to study these forms and studying them from human ex vivo samples was virtually impossible. Today, non-human primate (NHP) models and modern systems biology approaches are poised as tools to enable the in-depth study of P. vivax liver-stage biology, including hypnozoites and relapses. NHP liver-stage model systems for P. vivax and the related simian malaria species P. cynomolgi are discussed along with perspectives regarding metabolite biomarker discovery, putative roles of extracellular vesicles, and relapse immunobiology.

Cite

CITATION STYLE

APA

Joyner, C., Barnwell, J. W., & Galinski, M. R. (2015). No more monkeying around: Primate malaria model systems are key to understanding Plasmodium vivax liver-stage biology, hypnozoites, and relapses. Frontiers in Microbiology, 6(MAR). https://doi.org/10.3389/fmicb.2015.00145

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free