Molybdenum Sulfide nanosheets (MoS2 NSs) have unique properties that allow its use in a wide range of applications. Unfortunately, a lack of green synthesis methods to achieve a high yield remains a challenge after decades. Herein we report a simple, ecofriendly, green and cost-effective approach to synthesize water soluble MoS2 NSs via probe/Tip sonication method. The sequential batch manner pathway allows us to attain a high yield of MoS2 NSs (~100%). The prepared MoS2 NSs were characterized using up-to-date surface science techniques. UV-visible-NIR spectroscopy allowed us to visualize the doublet peaks of pristine MoS2 at 610 and 680 nm concomitant with the inter-band transitions at 394 nm and 460 nm. Using Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS), the crystallites’ sizes were estimated. X-ray diffraction (XRD) and Raman Spectroscopy were performed with respect to the bulk MoS2 . The energy difference between the Raman peaks revealed that our NSs are formed of 5–6 layers. Further, we explored enzyme peroxidase mimetic properties of the synthesized MoS2 NSs. Results showed that the present MoS2 NSs offer excellent peroxidase mimicking properties. Most importantly, we observed that the optical properties and characteristics of MoS2 NSs synthesized by the current green method are similar to those of MoS2 NSs synthesized using conventional harsh methods reported in the literature. So that we strongly assume that the present method is a green alternative for the existing low yield and harsh experimental procedures to achieve water soluble MoS2 NSs in high yield. The synthesized soluble NSs are promising catalysts for the detection of toxic chemicals in the environment and/or for following enzymatic chromogenic reactions.
CITATION STYLE
Thangudu, S., Lee, M. T., & Rtimi, S. (2020). Tandem synthesis of high yield mos2 nanosheets and enzyme peroxidase mimicking properties. Catalysts, 10(9), 1–11. https://doi.org/10.3390/catal10091009
Mendeley helps you to discover research relevant for your work.