Improved Work Function of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonic acid) and its Effect on Hybrid Silicon/Organic Heterojunction Solar Cells

23Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Hybrid silicon/organic solar cells have been recently extensively investigated due to their simple structure and low-cost fabrication process. However, the efficiency of the solar cells is greatly limited by the barrier height as well as the carrier recombination at the silicon/organic interface. In this work, hydrochloroplatinic acid (H2PtCl6) is employed into the poly(3,4-ethlenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) solution, and the work function (WF) of the PEDOT:PSS layer has been successfully improved. Based on the Pt-modified PEDOT:PSS layer, the efficiency of the silicon/PEDOT:PSS cell can be increased to 11.46%, corresponding to ~20% enhancement to the one without platinum (Pt) modification. Theoretical and experimental results show that, when increasing the WF of the PEDO:PSS layer, the barrier height between the silicon/PEDOT:PSS interface can be effectively enhanced. Meanwhile, the carrier recombination at the interface is significantly reduced. These results can contribute to better understanding of the interfacial mechanism of silicon/PEDOT:PSS interface, and further improving the device performance of silicon/organic solar cells.

Cite

CITATION STYLE

APA

Shen, X., Chen, L., Pan, J., Hu, Y., Li, S., & Zhao, J. (2016). Improved Work Function of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonic acid) and its Effect on Hybrid Silicon/Organic Heterojunction Solar Cells. Nanoscale Research Letters, 11(1). https://doi.org/10.1186/s11671-016-1759-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free