Abstract
The analysis of recorded audio material using computational methods has received increased attention in ethnomusicological research. We present a curated dataset of traditional Georgian vocal music for computational musicology. The corpus is based on historic tape recordings of three-voice Georgian songs performed by the the former master chanter Artem Erkomaishvili. In this article, we give a detailed overview of the audio material, transcriptions, and annotations contained in the dataset. Beyond its importance for ethnomusicological research, this carefully organized and annotated corpus constitutes a challenging scenario for music information retrieval tasks such as fundamental frequency estimation, onset detection, and score-to-audio alignment. The corpus is publicly available and accessible through score-following web-players.
Author supplied keywords
Cite
CITATION STYLE
Rosenzweig, S., Scherbaum, F., Shugliashvili, D., Arifi-Müller, V., & Müller, M. (2020). Erkomaishvili Dataset: A Curated Corpus of Traditional Georgian Vocal Music for Computational Musicology. Transactions of the International Society for Music Information Retrieval, 3(1), 31–41. https://doi.org/10.5334/TISMIR.44
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.