Abstract
An alkyl functionalized gellan gum derivative is here used to produce hydrogels containing hydroxyapatite and tricalcium phosphate nanoparticles as injectable nanostructured scaffolds for bone regeneration. The amphiphilic nature of the polysaccharide derivative along with its thermotropic behavior and ionotropic crosslinking features make possible to produce injectable bone mimetic scaffolds that can be used to release viable cells and osteoinductive biomolecules. The influence of different nanoparticles concentration on the rheological and physicochemical properties of the injectable systems is studied. It is found that the presence of inorganic nanoparticles reinforces the 3D hydrated polymeric networks without influencing their injectability but improving the physicochemical properties of ionotropic crosslinked hydrogels produced with two different curing media. Preliminary cytocompatibility tests performed with murine preosteoblast cells revealed that gellan gum based hydrogels can safely encapsulate viable cells. Loading and release experiments for dexamethasone and stromal cell-derived factor-1 demonstrate the drug delivery features of the obtained injectable systems.
Author supplied keywords
Cite
CITATION STYLE
Pitarresi, G., Palumbo, F. S., Fiorica, C., Bongiovì, F., Martorana, A., Federico, S., … Giammona, G. (2022). Composite Hydrogels of Alkyl Functionalized Gellan Gum Derivative and Hydroxyapatite/Tricalcium Phosphate Nanoparticles as Injectable Scaffolds for bone Regeneration. Macromolecular Bioscience, 22(2). https://doi.org/10.1002/mabi.202100290
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.