Abstract
Extracellular redox-active compounds, flavins and other quinones, have been hypothesized to play a major role in the delivery of electrons from cellular metabolic systems to extracellular insoluble substrates by a diffusion-based shuttling two-electron-transfer mechanism. Here we show that flavin molecules secreted by Shewanella oneidensis MR-1 enhance the ability of its outer-membrane c-type cytochromes (OM c-Cyts) to transport electrons as redox cofactors, but not free-form flavins. Whole-cell differential pulse voltammetry revealed that the redox potential of flavin was reversibly shifted more than 100 mV in a positive direction, in good agreement with increasing microbial current generation. Importantly, this flavin/OM c-Cyts interaction was found to facilitate a one-electron redox reaction via a semiquinone, resulting in a 103- to 105-fold faster reaction rate than that of free flavin. These results are not consistent with previously proposed redox-shuttling mechanisms but suggest that the flavin/OM c-Cyts interaction regulates the extent of extracellular electron transport coupled with intracellular metabolic activity.
Author supplied keywords
Cite
CITATION STYLE
Okamoto, A., Hashimoto, K., Nealson, K. H., & Nakamura, R. (2013). Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones. Proceedings of the National Academy of Sciences of the United States of America, 110(19), 7856–7861. https://doi.org/10.1073/pnas.1220823110
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.