Deletion of fucose residues in plant N-glycans by repression of the GDP-mannose 4,6-dehydratase gene using virus-induced gene silencing and RNA interference

N/ACitations
Citations of this article
32Readers
Mendeley users who have this article in their library.

Abstract

Summary: Production of pharmaceutical glycoproteins in plants has many advantages in terms of safety and reduced costs. However, plant-produced glycoproteins have N-glycans with plant-specific sugar residues (core β-1,2-xylose and α-1,3-fucose) and a Lewis a (Lea) epitope, i.e., Galβ(1-3)[Fucα(1-4)]GlcNAc. Because these sugar residues and glycan structures seemed to be immunogenic, several attempts have been made to delete them by repressing their respective glycosyltransferase genes. However, until date, such deletions have not been successful in completely eliminating the fucose residues. In this study, we simultaneously reduced the plant-specific core α-1,3-fucose and α-1,4-fucose residues in the Lea epitopes by repressing the Guanosine 5'-diphosphate (GDP)-D-mannose 4,6-dehydratase (GMD) gene, which is associated with GDP-L-fucose biosynthesis, in Nicotiana benthamiana plants. Repression of GMD was achieved using virus-induced gene silencing (VIGS) and RNA interference (RNAi). The proportion of fucose-free N-glycans found in total soluble protein from GMD gene-repressed plants increased by 80% and 95% following VIGS and RNAi, respectively, compared to wild-type plants. A small amount of putative galactose substitution in N-glycans from the NbGMD gene-repressed plants was observed, similar to what has been previously reported GMD-knockout Arabidopsis mutant. On the other hand, the recombinant mouse granulocyte-macrophage colony-stimulating factor (GM-CSF) with fucose-deleted N-glycans was successfully produced in NbGMD-RNAi transgenic N. benthamiana plants. Thus, repression of the GMD gene is thus very useful for deleting immunogenic total fucose residues and facilitating the production of pharmaceutical glycoproteins in plants. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

Cite

CITATION STYLE

APA

Matsuo, K., & Matsumura, T. (2011). Deletion of fucose residues in plant N-glycans by repression of the GDP-mannose 4,6-dehydratase gene using virus-induced gene silencing and RNA interference. Plant Biotechnology Journal, 9(2), 264–281. https://doi.org/10.1111/j.1467-7652.2010.00553.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free