Exploration and evaluation of efficient pre-processing and segmentation technique for breast cancer diagnosis based on mammograms

3Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Breast cancer is the second leading cause of death for women everywhere in the world. Since the reason behind the disease remains unknown, early detection and diagnosis is the key challenge for breast cancer control. In this work, mammogram images are initially subject to pre-processing using Laplacian filter for enhancement of tumour regions, Gaussian mixture model, Gaussian kernel FCM, Otsu global thresholding and FCM technique are employed for segmentation. Further, the efficiency of segmentation techniques is analyzed by classifying the samples into benign, malignant and healthy using Gray Level Co-occurrence Matrix (GLCM) features. Linear discriminant analysis classi-fier is used a combination based on which efficiency used for classification of mammograms. Ensemble methods are evaluated. The efficiency has resulted in better accuracy with the ensemble-based method. The experimentation is conducted in the mini MIAS database of mammograms, and the efficiency of the linear discriminant analyzer is found to be 89.19% for GKFCM, 83.78% with Otsu and 78.38% with FCM method with GLCM features.

Cite

CITATION STYLE

APA

Shobha Rani, N., & Rao, C. S. (2019). Exploration and evaluation of efficient pre-processing and segmentation technique for breast cancer diagnosis based on mammograms. International Journal of Research in Pharmaceutical Sciences, 10(3), 2071–2081. https://doi.org/10.26452/ijrps.v10i3.1423

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free