Detection of Forest Fires through Deep Unsupervised Learning Modeling of Sentinel-1 Time Series

10Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

With an increase in the amount of natural disasters, the combined use of cloud-penetrating Synthetic Aperture Radar and deep learning becomes unavoidable for their monitoring. This article proposes a methodology for forest fire detection using unsupervised location-expert autoencoders and Sentinel-1 SAR time series. The models are trained on SAR multitemporal images over a specific area using a reference period and extract any deviating time series over that same area for the test period. We present three variations of the autoencoder, incorporating either temporal features or spatiotemporal features, and we compare it against a state-of-the-art supervised autoencoder. Despite their limitations, we show that unsupervised approaches are on par with supervised techniques, performance-wise. A specific architecture, the fully temporal autoencoder, stands out as the best-performing unsupervised approach by leveraging temporal information of Sentinel-1 time series using one-dimensional convolutional layers. The approach is generic and can be applied to many applications, though we focus here on forest fire detection in Canadian boreal forests as a successful use case.

Cite

CITATION STYLE

APA

Di Martino, T., Le Saux, B., Guinvarc’h, R., Thirion-Lefevre, L., & Colin, E. (2023). Detection of Forest Fires through Deep Unsupervised Learning Modeling of Sentinel-1 Time Series. ISPRS International Journal of Geo-Information, 12(8). https://doi.org/10.3390/ijgi12080332

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free