Abstract
Previous studies have found microRNA-1 (miR-1) and hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) may be involved in the pathogenesis of thyroid hormone (TH) induced cardiac hypertrophy. However, little is known about the role of miR-1 and HCN2 in thyroid stimulation hormone (TSH)-induced cardiac dysfunction. In order to investigate the molecular mechanisms of TSH induced cardiac dysfunction and the role of miR-1/HCN2 in that process, we evaluated the expression of miR-1a/HCN2 in the ventricular myocardium of hypothyroid mice and in TSH-stimulated H9c2 cardiomyocytes. Our data revealed that hypothyroidism mice had smaller hearts, ventricular muscle atrophy, and cardiac contractile dysfunction compared with euthyroid controls. The upregulation of miR-1a and downregulation of HCN2 were found in ventricular myocardium of hypothyroid mice and TSH-stimulated H9c2 cardiomyocytes, indicating that miR-1a and HCN2 may be involved in TSH-induced cardiac dysfunction. We also found that the regulation of miR-1a and HCN2 expression and HCN2 channel activity by TSH requires TSHR, while the regulation of HCN2 expression and HCN2 channel function by TSH requires miR-1a. Thus, our data revealed the potential mechanism of TSH-induced cardiac dysfunction and might shed new light on the pathological role of miR-1a/HCN2 in hypothyroid heart disease.
Author supplied keywords
Cite
CITATION STYLE
Zhang, S., Li, R., Ma, Y., Yan, Y., Ma, M., Zhang, K., … Xue, Y. (2022). Thyroid-stimulating hormone regulates cardiac function through modulating HCN2 via targeting microRNA-1a. FASEB Journal, 36(10). https://doi.org/10.1096/fj.202200574R
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.