A Monte Carlo power analysis of traditional repeated measures and hierarchical multivariate linear models in longitudinal data analysis

7Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

The power properties of traditional repeated measures and hierarchical linear models have not been clearly determined in the balanced design for longitudinal studies in the current literature. A Monte Carlo power analysis of traditional repeated measures and hierarchical multivariate linear models are presented under three variance-covariance structures. Results suggest that traditional repeated measures have higher power than hierarchical linear models for main effects, but lower power for interaction effects. Significant power differences are also exhibited when power is compared across different covariance structures. Results also supplement more comprehensive empirical indexes for estimating model precision via bootstrap estimates and the approximate power for both main effects and interaction tests under standard model assumptions. Copyright © 2008 JMASM, Inc.

Cite

CITATION STYLE

APA

Fang, H., Brooks, G. P., Rizzo, M. L., Espy, K. A., & Barcikowski, R. S. (2008). A Monte Carlo power analysis of traditional repeated measures and hierarchical multivariate linear models in longitudinal data analysis. Journal of Modern Applied Statistical Methods, 7(1), 101–119. https://doi.org/10.22237/jmasm/1209614880

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free