Deuterium retention and desorption behavior of co-deposited carbon film produced in gap

0Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

Co-deposition of deuterium with carbon in an opening on a plasma-facing surface, a so-called 'gap', was simulated by using a deuterium arc discharge with carbon electrodes. The carbon deposition distribution and deuterium retention/desorption behavior of the carbon film were investigated. The amount of deposited carbon decreased exponentially with an increase of the distance from the gap entrance and more rapidly decreased with an increase in discharge gas pressure. The deuterium concentration in the carbon film increased with discharge gas pressure. At a high discharge gas pressure of 36 Pa, the atomic ratio of D/C in the carbon film reached as high as 0.9. Deuterium retained in the film desorbed mainly in the forms of D2, HD, CD4 and C2D4. The desorption behavior of retained deuterium depended on D/C. In a film with a high D/C ratio, desorption of D2 started at lower temperatures. The amount of desorbed hydrocarbons (CD4 and C2D4) increased with D/C. Carbon film with high D/C tended to contain a polymer-like structure, which could be related to the desorption behavior of the retained deuterium. © 2012 The Japan Society of Plasma Science and Nuclear Fusion Research.

Cite

CITATION STYLE

APA

Nobuta, Y., Yokoyama, K., Kanazawa, J., Yamauchi, Y., Hino, T., Suzuki, S., … Akiba, M. (2012). Deuterium retention and desorption behavior of co-deposited carbon film produced in gap. Plasma and Fusion Research, 7(SPL.ISS.1). https://doi.org/10.1585/pfr.7.2405134

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free