Abstract
The Mg–12Gd–1Er–1Zn–0.9Zr (wt%) alloy with ultra-high strength and ductility was developed via hot extrusion combined with pre-deformation and two-stage aging treatment. The age-hardening behavior and microstructure evolution were investigated. Pre-deformation introduced a large number of dislocations, resulting in strain hardening and higher precipitation strengthening in the subsequent two-stage aging. As a result, the alloy showed a superior strength–ductility balance with a yield strength of 506 MPa, an ultimate tensile strength of 549 MPa and an elongation of 8.2% at room temperature. The finer and denser β′ precipitates significantly enhanced the strength, and the bimodal structure, small β-Mg5RE phase as well as dense γ′ precipitates ensured the good ductility of the alloy. It is suggested that the combination of pre-deformation and two-stage aging treatment is an effective method to further improve the mechanical properties of wrought Mg alloys.
Author supplied keywords
Cite
CITATION STYLE
Jia, L. Y., Du, W. B., Fu, J. L., Wang, Z. H., Liu, K., Li, S. B., & Du, X. (2021, January 1). Obtaining Ultra-High Strength and Ductility in a Mg–Gd–Er–Zn–Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging. Acta Metallurgica Sinica (English Letters). Chinese Society of Metals. https://doi.org/10.1007/s40195-020-01132-x
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.