Abstract
Background: The maximal running speed (VMAX) determined on a graded treadmill test is well-recognized as a running performance predictor. However, few studies have assessed the variables that predict VMAX in recreationally active runners. Methods: We used a mathematical procedure combining Fick’s law and metabolic cost analysis to verify the relation between (1) VMAX versus anthropometric and physiological determinants of running performance and, (2) theoretical metabolic cost versus running biomechanical parameters. Linear multiple regression and bivariate correlation were applied. We aimed to verify the biomechanical, physiological, and anthropometrical determinants of VMAX in recreationally active runners. Fifteen recreationally active runners participated in this observational study. A Conconi and a stead-steady running test were applied using a heart rate monitor and a simple video camera to register the physiological and mechanical variables, respectively. Results: Statistical analysis revealed that the speed at the second ventilatory threshold, theoretical metabolic cost, and fat-mass percentage confidently estimated the individual running performance as follows: VMAX = 58.632 + (−0.183 * fat percentage) + (−0.507 * heart rate percentage at second ventilatory threshold) + (7.959 * theoretical metabolic cost) (R2 = 0.62, p = 0.011, RMSE = 1.50 km.h−1). Likewise, the theoretical metabolic cost was significantly explained (R2 = 0.91, p = 0.004, RMSE = 0.013 a.u.) by the running spatiotemporal and elastic-related parameters (contact and aerial times, stride length and frequency, and vertical oscillation) as follows: theoretical metabolic cost = 10.421 + (4.282 * contact time) + (−3.795 * aerial time) + (−2.422 * stride length) + (−1.711 * stride frequency) + (0.107 * vertical oscillation).
Cite
CITATION STYLE
Peyré-Tartaruga, L. A., Machado, E., Guimarães, P., Borba, E., Tartaruga, M. P., Buzzachera, C. F., … da Silva, E. S. (2024). Biomechanical, physiological and anthropometrical predictors of performance in recreational runners. PeerJ, 12. https://doi.org/10.7717/peerj.16940
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.