Adaptive Pairwise Comparison for Educational Measurement

18Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Pairwise comparison is becoming increasingly popular as a holistic measurement method in education. Unfortunately, many comparisons are required for reliable measurement. To reduce the number of required comparisons, we developed an adaptive selection algorithm (ASA) that selects the most informative comparisons while taking the uncertainty of the object parameters into account. The results of the simulation study showed that, given the number of comparisons, the ASA resulted in smaller standard errors of object parameter estimates than a random selection algorithm that served as a benchmark. Rank order accuracy and reliability were similar for the two algorithms. Because the scale separation reliability (SSR) may overestimate the benchmark reliability when the ASA is used, caution is required when interpreting the SSR.

Cite

CITATION STYLE

APA

Crompvoets, E. A. V., Béguin, A. A., & Sijtsma, K. (2020). Adaptive Pairwise Comparison for Educational Measurement. Journal of Educational and Behavioral Statistics, 45(3), 316–338. https://doi.org/10.3102/1076998619890589

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free