CFD modeling on influence of impinging spout strength for device cooling with water-Al2O3 nanofluid

10Citations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Current assessment get through to the effect of spout strength aimed at spout impact cooling through water-Al2O3 nanofluid. CFD codes got established to compute the governing equalities of mass, force and drive for envisaging the thermal issues. CFD codes got executed through water-Al2O3 nanofluid spouts to envisage thermal issues on the chosen plate. It uses 3 mm nozzle dimension, 5 mm nozzle to plate distance and varying spout strengths of 42, 52, 62 and 72 m/s. As projected from every temperature arena, the temperature gently grows from spout impact spot on chosen plate along centrifugally peripheral course. This could stand because of thermal outflow using water-Al2O3 nanofluid. The developments of temperature disparities alongside the radial course aimed at the identified cases are really similar. Still, the extreme temperatures over the chosen plate for situations with spout strengths of 42, 52, 62 and 72 m/s are detected to remain 320, 315, 310 and 308 K, respectively. It may be witnessed that there is no such significant decrease in temperature from spout strength of 62 to 72 m/s (involving loss of extra mechanical power). Hence, the spout strength of 62 m/s embraces rather lesser mean temperature and so, it stands as the ideal one.

Cite

CITATION STYLE

APA

Kund, N. K. (2019). CFD modeling on influence of impinging spout strength for device cooling with water-Al2O3 nanofluid. International Journal of Innovative Technology and Exploring Engineering, 8(10), 1776–1779. https://doi.org/10.35940/ijitee.J9166.0881019

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free