Cells metabolize nutrients through a complex metabolic and signaling network that governs redox homeostasis. At the core of this, redox regulatory network is a mutually inhibitory relationship between reduced glutathione and reactive oxygen species (ROS)-two opposing metabolites that are linked to upstream nutrient metabolic pathways (glucose, cysteine, and glutamine) and downstream feedback loops of signaling pathways (calcium and NADPH oxidase). We developed a nutrient-redox model of human cells to understand system-level properties of this network. Combining in silico modeling and ROS measurements in individual cells, we show that ROS dynamics follow a switch-like, all-or-none response upon glucose deprivation at a threshold that is approximately two orders of magnitude lower than its physiological concentration. We also confirm that this ROS switch can be irreversible and exhibits hysteresis, a hallmark of bistability. Our findings evidence that bistability modulates redox homeostasis in human cells and provide a general framework for quantitative investigations of redox regulation in humans.
CITATION STYLE
Huang, J., Co, H. K., Lee, Y., Wu, C., & Chen, S. (2021). Multistability maintains redox homeostasis in human cells. Molecular Systems Biology, 17(10). https://doi.org/10.15252/msb.202110480
Mendeley helps you to discover research relevant for your work.