A unified framework for machine learning collective variables for enhanced sampling simulations: mlcolvar

28Citations
Citations of this article
67Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Identifying a reduced set of collective variables is critical for understanding atomistic simulations and accelerating them through enhanced sampling techniques. Recently, several methods have been proposed to learn these variables directly from atomistic data. Depending on the type of data available, the learning process can be framed as dimensionality reduction, classification of metastable states, or identification of slow modes. Here, we present mlcolvar, a Python library that simplifies the construction of these variables and their use in the context of enhanced sampling through a contributed interface to the PLUMED software. The library is organized modularly to facilitate the extension and cross-contamination of these methodologies. In this spirit, we developed a general multi-task learning framework in which multiple objective functions and data from different simulations can be combined to improve the collective variables. The library’s versatility is demonstrated through simple examples that are prototypical of realistic scenarios.

Cite

CITATION STYLE

APA

Bonati, L., Trizio, E., Rizzi, A., & Parrinello, M. (2023). A unified framework for machine learning collective variables for enhanced sampling simulations: mlcolvar. Journal of Chemical Physics, 159(1). https://doi.org/10.1063/5.0156343

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free