ESTIMATION OF HEIGHT OF EUCALYPTUS TREES WITH NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT)

  • Binoti D
  • Duarte P
  • Silva M
  • et al.
N/ACitations
Citations of this article
14Readers
Mendeley users who have this article in their library.
Get full text

Abstract

ABSTRACT The aim of this study was to evaluate the method of neuroevolution of augmenting topologies (NEAT) to adjust the weights and the topology of artificial neural networks (ANNs) in the estimation of tree height in a clonal population of eucalyptus, and compare with estimates obtained by a hypsometric regression model. To estimate the total tree height (Ht), the RNAs and the regression model, we used as variables a diameter of 1.3 m height (dbh) and the dominant height (Hd). The RNAs were adjusted and applied to the computer system NeuroForest, varying the size of the initial population (the genetic algorithm parameter) and the density of initial connections. Estimates of the total height of the trees obtained with the use of RNA and the regression model were evaluated based on the correlation coefficient, the percentage of errors scatter plot, the percentage frequency histogram of percentage errors, and the root mean square error (root mean square error - RMSE). Various settings which resulted in superior statistics to the hypsometric regression model were found. Connections had the highest correlation and the lowest RMSE% with a population size value of 300 and an initial density of 0.1 RNA. The NEAT methodology proved effective in estimating the height of trees in clonal population of eucalyptus.RESUMO O objetivo geral deste trabalho foi avaliar o método Neuroevolution of Augmenting Topologies (NEAT) para ajustar os pesos e a topologia de redes neurais artificiais (RNAs) na estimação da altura de árvores em povoamento clonais de eucalipto, bem como comparar com as estimativas obtidas por um modelo hipsométrico de regressão. Para a estimativa da altura total das árvores (Ht), pelas RNAS e pelo modelo de regressão, utilizou-se variáveis diâmetro à 1,3 m de altura (dap) e a altura dominante (Hd). As RNAs foram ajustadas e aplicadas no sistema computacional NeuroForest, variando o tamanho da população inicial (parâmetro do algoritmo genético) e a densidade das conexões iniciais. As estimativas da altura total das árvores obtidas com o emprego de RNA e pelo modelo de regressão foram avaliadas com base no coeficiente de correlação, no gráfico de dispersão dos erros percentuais, no histograma de frequência percentual dos erros percentuais e na raiz do erro quadrado médio percentual (Root Mean Square Error - RMSE). A configuração de tamanho de população 300 e densidade inicial das conexões de 0,1 obteve a maior correlação e o menor RMSE%. Foram encontradas várias configurações de RNA com estatísticas superiores ao modelo hipsométrico de regressão. A metodologia NEAT pode ser utilizada para a estimação da altura de árvores em povoamento clonais de eucalipto.

Cite

CITATION STYLE

APA

Binoti, D. H. B., Duarte, P. J., Silva, M. L. M. da, Silva, G. F. da, Leite, H. G., Mendonça, A. R. de, … Vega, A. E. D. (2018). ESTIMATION OF HEIGHT OF EUCALYPTUS TREES WITH NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT). Revista Árvore, 41(3). https://doi.org/10.1590/1806-90882017000300014

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free