Background: Human heterotaxy is a group of congenital disorders characterized by misplacement of one or more organs according to the left-right axis. The genetic causes of human heterotaxy are highly heterogeneous. Methods: We performed exome sequencing in a cohort of 26 probands with heterotaxy followed by gene burden analysis for the enrichment of novel rare damaging mutations. Transcription activator-like effector nuclease was used to generate somatic loss-of-function mutants in a zebrafish model. Ciliary defects were examined by whole-mount immunostaining of acetylated α-tubulin. Results: We identified a significant enrichment of novel rare damaging mutations in the CC2D1A gene. Seven occurrences of CC2D1A mutations were found to affect 4 highly conserved amino acid residues of the protein. Functional analyses in the transcription activator-like effector nuclease-mediated zebrafish knockout models were performed, and heterotaxy phenotypes of the cardiovascular and gastrointestinal systems in both somatic and germline mutants were observed. Defective cilia were demonstrated by whole-mount immunostaining of acetylated α-tubulin. These abnormalities were rescued by wild-type cc2d1a mRNA but not cc2d1a mutant mRNA, strongly suggesting a loss-of-function mechanism. On the other hand, overexpression of cc2d1a orthologous mutations cc2d1a P559L and cc2d1a G808V (orthologous to human CC2D1A P532L and CC2D1A G781V) did not affect embryonic development. Conclusions: Using a zebrafish model, we were able to establish a novel association of CC2D1A with heterotaxy and ciliary dysfunction in the F2 generation via a loss-of-function mechanism. Future mechanistic studies are needed for a better understanding of the role of CC2D1A in left-right patterning and ciliary dysfunction.
CITATION STYLE
Ma, A. C. H., Mak, C. C. Y., Yeung, K. S., Pei, S. L. C., Ying, D., Yu, M. H. C., … Chung, B. H. Y. (2020). Monoallelic Mutations in CC2D1A Suggest a Novel Role in Human Heterotaxy and Ciliary Dysfunction. Circulation: Genomic and Precision Medicine, 13(6), E003000. https://doi.org/10.1161/CIRCGEN.120.003000
Mendeley helps you to discover research relevant for your work.