Digital elevation model construction from structured topographic data: The DEST algorithm

  • Favalli M
  • Pareschi M
N/ACitations
Citations of this article
57Readers
Mendeley users who have this article in their library.
Get full text

Abstract

An algorithm, Determination of Earth Surface Structures (DEST), is presented to reconstruct digital terrain models of complex landforms from topographic data, such as contour lines and spot heights. The algorithm provides a triangular irregular network (TIN) of the source data, based on a modified Delaunay approach. Delaunay triangulation can introduce artificial terraces from a nonrandom distribution of input points such as a sampled contour line. The algorithm proposed here constructs the three‐dimensional principal skeletons of these artificial flat areas, eliminating the unwanted effects of contour lines. The algorithm can also be applied to topographic data from a variety of mixed sources such as photogrammetric information, radar altimetry measurements, and traditional contour lines. The sparse fine‐surface structures present in the source data are preserved, allowing accurate morphological evaluations, tectonic lineament extraction, and volume estimation. A methodology (D‐DEST) to easily derive, from a TIN computed by DEST, the drainage path and the catchment areas is also presented. A comparison of DEST with other methodologies is performed. It results that our approach does not introduce sensible biased effects in slopes, aspects, drainage network, and catchment areas. The evolution of the upper cone of Vesuvius volcano (Italy) during the last century, as derived from historical cartography, is presented as an application of DEST. The algorithm implemented in C can be requested at DEST_pareschi@pi.ingv.it .

Cite

CITATION STYLE

APA

Favalli, M., & Pareschi, M. T. (2004). Digital elevation model construction from structured topographic data: The DEST algorithm. Journal of Geophysical Research: Earth Surface, 109(F4). https://doi.org/10.1029/2004jf000150

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free