Anomalous nonlinear damping in metallic glasses: Signature of elasticity breakdown

7Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

Solid materials, whether crystalline or glasses, are characterized by their elasticity. Generally, elasticity is independent of the probing strain if it is not exceeding the yielding point. Here, by contrast, we experimentally capture a pronounced strain-dependent elasticity in metallic glasses, as manifested by nonlinear mechanical damping in the apparent elastic deformation regime (∼1/100 of the yielding strain). Normal damping behaviors recover at higher temperatures but still below the glass transition. Atomistic simulations reproduce these features and reveal that they could be related to avalanche-like local structural instabilities. Our findings demonstrate that the standard elasticity is not held for metallic glasses at low temperatures and plastic events can be triggered at small perturbations. These results are consistent with previous simulations of model glasses and a scenario of hierarchical free-energy landscape of mean-field theory.

Cite

CITATION STYLE

APA

Peng, S. X., Zhang, C., Yang, C., Li, R., Zhang, T., Liu, L., … Samwer, K. (2019). Anomalous nonlinear damping in metallic glasses: Signature of elasticity breakdown. Journal of Chemical Physics, 150(11). https://doi.org/10.1063/1.5088184

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free