Complexity in hydroecological modelling: A comparison of stepwise selection and information theory

8Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Understanding of the hydroecological relationship is vital to maintaining the health of the river and thus its ecosystem. Stepwise selection is widely used to develop numerical models which represent these processes. Increasingly, however, there are questions over the suitability of the approach, and coupled with the increasing complexity of hydroecological modelling, there is a real need to consider alternative approaches. In this study, stepwise selection and information theory are employed to develop models which represent two realizations of the system which recognizes increasing complexity. The two approaches are assessed in terms of model structure, modelling error, and model (statistical) uncertainty. The results appear initially inconclusive, with the information theory approach leading to a reduction in modelling error but greater uncertainty. A Monte Carlo approach, used to explore this uncertainty, revealed modelling errors to be only slightly more distributed for the information theory approach. Consideration of the philosophical underpinnings of the two approaches provides greater clarity. Statistical uncertainty, as measured by information theory, will always be greater due to its consideration of two sources, parameter and model selection. Consequently, by encompassing greater information, the measure of statistical uncertainty is more realistic, making an information theory approach more reflective of the complexity in real-world applications.

Cite

CITATION STYLE

APA

Visser, A. G., Beevers, L., & Patidar, S. (2018). Complexity in hydroecological modelling: A comparison of stepwise selection and information theory. River Research and Applications, 34(8), 1045–1056. https://doi.org/10.1002/rra.3328

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free