Insights into DDT resistance from the drosophila melanogaster genetic reference panel

46Citations
Citations of this article
60Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Insecticide resistance is considered a classic model of microevolution, where a strong selective agent is applied to a large natural population, resulting in a change in frequency of alleles that confer resistance. While many insecticide resistance variants have been characterized at the gene level, they are typically single genes of large effect identified in highly resistant pest species. In contrast, multiple variants have been implicated in DDT resistance in Drosophila melanogaster; however, only the Cyp6g1 locus has previously been shown to be relevant to field populations. Here we use genome-wide association studies (GWAS) to identify DDT-associated polygenes and use selective sweep analyses to assess their adaptive significance. We identify and verify two candidate DDT resistance loci. A largely uncharacterized gene, CG10737, has a function in muscles that ameliorates the effects of DDT, while a putative detoxifying P450, Cyp6w1, shows compelling evidence of positive selection.

Cite

CITATION STYLE

APA

Schmidt, J. M., Battlay, P., Gledhill-Smith, R. S., Good, R. T., Lumb, C., Fournier-Level, A., & Robin, C. (2017). Insights into DDT resistance from the drosophila melanogaster genetic reference panel. Genetics, 207(3), 1181–1193. https://doi.org/10.1534/genetics.117.300310

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free