Abstract
The use of artificial intelligence has shown good performance in the medical imaging area, in particular the deep learning methods based on convolutional neural networks for classification, detection, and/or segmentation tasks. The task addressed in this research work is the segmentation of amastigote nests from histological microphotographs in the study of Trypanosoma cruzi infection (Chagas disease) implementing a U-Net convolutional network architecture. For the nests’ segmentation, a U-Net architecture was trained on histological images of an acute-stage murine experimental model performing a 5-fold cross-validation, while the final tests were carried out with data unseen by the U-Net from three image groups of different experimental models. During the training stage, the obtained results showed an average accuracy of 98.19 ± 0.01, while in the case of the final tests, an average accuracy of 99.9 ± 0.1 was obtained for the control group, as well as 98.8 ± 0.9 and 99.1 ± 0.8 for two infected groups; in all cases, high sensitivity and specificity were observed in the results. We can conclude that the use of a U-Net architecture proves to be a relevant tool in supporting the diagnosis and analysis of histological images for the study of Chagas disease.
Author supplied keywords
Cite
CITATION STYLE
Hevia-Montiel, N., Haro, P., Guillermo-Cordero, L., & Perez-Gonzalez, J. (2023). Deep Learning–Based Segmentation of Trypanosoma cruzi Nests in Histopathological Images. Electronics (Switzerland), 12(19). https://doi.org/10.3390/electronics12194144
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.