RNA sequencing has been widely used as an essential tool to probe gene expression. While standard practices have been established to analyze RNA-seq data, it is still challenging to interpret and remove artifactual signals. Several biological and technical factors such as sex, age, batches, and sequencing technology have been found to bias these estimates. Probabilistic estimation of expression residuals (PEER), which infers broad variance components in gene expression measurements, has been used to account for some systematic effects, but it has remained challenging to interpret these PEER factors. Here we show that transcriptome diversity-a simple metric based on Shannon entropy-explains a large portion of variability in gene expression and is the strongest known factor encoded in PEER factors. We then show that transcriptome diversity has significant associations with multiple technical and biological variables across diverse organisms and datasets. In sum, transcriptome diversity provides a simple explanation for a major source of variation in both gene expression estimates and PEER covariates.
CITATION STYLE
García-Nieto, P. E., Wang, B., & Fraser, H. B. (2022). Transcriptome diversity is a systematic source of variation in RNA-sequencing data. PLoS Computational Biology, 18(3). https://doi.org/10.1371/journal.pcbi.1009939
Mendeley helps you to discover research relevant for your work.