Moisture-Dependent Physical-Mechanical Properties of Maize, Rice, and Soybeans as Related to Handling and Processing

14Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

Abstract

Knowledge of physical and mechanical properties of cereal grains is important for designing handling and processing equipment. However, there is still a lack of knowledge on the influence of moisture content on the physical-mechanical properties as related to machine design. The aim of this study was to investigate and describe the changes in select physical-mechanical properties of maize, rice, and soybeans at various moisture content (10%, 14%, 18%, 22%, 26%; wet basis) and their compression behavior at two loading rates of 1.25 mm/min and 125 mm/min. The measured physical and mechanical properties include size, shape, and breakage force of single kernels. It was found that an increase in moisture content increased the kernel size, altered the kernel shape, and decreased the bulk density. The effects of moisture content and loading rate on breakage force, stress, and energy varied depending on the grain type. Our results indicated that an increase in moisture content changed the mechanical behavior of grain kernels from brittle to viscoelastic. To prevent kernel damage during processing and handling, the measured force and stress during compression can be used as the limit value for designing equipment.

Cite

CITATION STYLE

APA

Kruszelnicka, W., Chen, Z., & Ambrose, K. (2022). Moisture-Dependent Physical-Mechanical Properties of Maize, Rice, and Soybeans as Related to Handling and Processing. Materials, 15(24). https://doi.org/10.3390/ma15248729

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free